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Ahdritz et al “OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization”Nat Methods 2024

Simpkin et al “Tertiary structure assessment at CASP15” Proteins 2025

Verkuil et al “Language models generalize beyond natural proteins” bioRxiv 2022
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• State-of-the-art AI methods can reliably 

predict static structures of monomeric 

proteins to high accuracy (Simpkin 2023)

- Includes de novo designed proteins (Verkuil 

2022)

- Unseen topologies (Ahdritz 2024, Frank 

2024)

• These do not extend to modeling their 

dynamics: how/when proteins move

• Some questions about dynamics can still 

be answered by vanilla protein structure 

prediction neural networks 

• Newer architectures can answer others

Protein structure prediction is solved, but protein folding is not



del Alamo et al “Conformational sampling and interconversion using language-based protein folding neural networks” bioRxiv 2023

Ramasamy et al “Assessing the relation between protein phosphorylation, AlphaFold3 models and conformational variability” bioRxiv 2025

Riccabona et al “Assessing AF2’s ability to predict structural ensembles of proteins” Structure 2024

Vani et al “Exploring kinase DFG loop conformational stability with AlphaFold2-RAVE” JCTC 2023

Wayment-Steele et al “Predicting multiple conformations via sequence clustering and AlphaFold2” Nature 2023
Zheng et al “AlphaFold3 in Drug Discovery: A comprehensive assessment of capabilities, limitations, and applications” bioRxiv  2025
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• Current ensemble prediction methods can model:

- User-specified alternate conformations

- Some aspects of Brownian motion

• They cannot:

- Model relative proportions of different populations 

(Vani 2023, Riccabona 2024)

- Model interconversion dynamics/transition paths 

(del Alamo 2023)

- Model the effects of mutations, ligands, or 

modifications on these populations (Zheng 2025, 

Ramasamy 2025)

• Requires lots of tinkering with settings, trial & 

error

Protein structure prediction



• What are protein dynamics?

• What kinds of biological problems are informed by studying dynamics?

• How can vanilla protein folding neural networks be modified to model dynamics?

• What modified and bespoke methods exist to answer these questions?

• Why don’t these methods learn protein dynamics?

• Integration of these methods with molecular dynamics

• Caveat: this talk will only cover backbone modeling of well-structured proteins, and will ignore 

innovations in modeling intrinsically disordered proteins (IDPs), oligonucleotides, or sidechain 

ensembles
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De novo prediction of protein structural dynamics: an outline



Ellaway et al, “Identifying protein conformational states in the Protein Data Bank: Toward unlocking the potential of integrative dynamics studies” Structural Dynamics 2024
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1. Breadth of motion, e.g., Brownian motion 

(microstates)

2. Structures of distinct low-energy states 

(macrostates)

3. Boltzmann weights between distinct low 

energy populations

- Transition paths and energy barriers separating 

these populations

- The whole thing is called the free energy 

landscape 

4. Effect of ligands, mutations, covalent 

modifications, and combinations thereof on 

the free energy landscape

- Metals, phosphoryl groups, waters, protons, etc

What are protein dynamics, anyway?



Dishman et al, “Evolution of fold switching in a metamorphic protein” Science 2021

Fernandez-Quintero et al, “Local and Global Rigidification Upon Antibody Affinity Maturation” Frontiers in Immunology 2020

Meller et al, “Accelerating Cryptic Pocket Discovery Using AlphaFold” JCTC 2023

Tokuriki & Tawfik “Protein dynamism and evolvability” Science 2009

Yee et al “The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics” Mol Cell 2025
Zarifi et al “Distal mutations enhance catalysis in designed enzymes by facilitating substrate binding and product release” bioRxiv 2025
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• Conformational heterogeneity and binding 

promiscuity (antibodies)

• Active site preorganization (designed and/or 

engineered enzymes)

• Cryptic pockets and alternative druggable 

states (drug targets)

• Molecular basis of genetic diseases (almost all 

human proteins)

• Evolution of functional novelty (most proteins)

• Sometimes, structural modeling isn’t the best 

way to answer biological questions about 

protein dynamics

What protein dynamics tell us about biological mechanisms
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The state of the art

Jing et al “AlphaFold meets Flow Matching for generating protein ensembles” ICLR 2024

• Modeling alternative conformations:

- Vanilla AlphaFold2 with subsampled or modified MSAs, 

custom template databases, etc

- Fine-tuned AlphaFold2 (AlphaFlow, DiG, etc), ESMFold 

(ESMFlow), or RosettaFold2 neural networks

- Trained from scratch (Str2str, aSAMt, Cfold)

• Modeling entire free energy landscapes

- Distributional Graphormer (DiG), aSAMt, P2DFlow

- BioEmu: Prediction of free energy landscapes of 

monomeric proteins to ~1 kcal/mol

• Precision/diversity trade-off: one highly accurate 

model vs lots of potentially inaccurate models

• MD is the gold standard, but is excrutiatingly 

expensive



Bennett et al “Improving de novo protein binder design with deep learning” Nature Comms 2023

Gavalda-Garcia et al “Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics” JMB 2025

Jussupow & Kaila “Effective Molecular Dynamics from Neural Network-Based Structure Prediction Models” JCTC 2023

Saldaño et al “Impact of protein conformational diversity on AlphaFold predictions” Bioinformatics 2022
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• Error/confidence metrics show some correlation 

with mobility/conformational flexibility in MD 

simulations (Gavaldo-Garcia 2025, Jussupow 

2023, Saldaño 2022)

• Contacts for non-sampled states show up in 

distograms (Jumper 2021)

• (Note that error metrics in AF2 & RosettaFold2 

are highly correlated; Bennett 2023)

Protein folding NNs already “know” dynamics



Chakravarty & Porter “AlphaFold2 fails to predict protein fold switching” Protein Science 2022 
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Protein folding NNs tend to sample the same state repeatedly



Jumper et al “Highly accurate protein structure prediction with AlphaFold” Nature 2021
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Review of AF2 architecture



Predicting alternate conformational states with vanilla AlphaFold2

• Sequence-based methods that work

- MSA masking (Stein 2022, Kalakoti 2025)

- MSA sourcing (da Silva 2024, Faezov 2023)

- MSA clustering (Wayment-Steele 2023)

- MSA subsampling (del Alamo 2022)

- Truncation of autoinhibitory domains (del Alamo 

2022a)

- Inclusion of conformationally selective binding 

partners (Cummins 2022)

• Sequence-based augmentations that don’t work:

- Point mutations, including those that work in vitro 

(Ramsamy 2025, Vani 2023, Zheng 2025; 

sometimes many mutations work)
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da Silva et al, “High-throughput prediction of protein conformational distributions with subsampled AlphaFold2” Nature Comms 2024

Cummins et al, “AlphaFold accurately predicts distinct conformations based on the oligomeric state of a de novo designed protein” Prot Sci 2022

del Alamo et al, “Sampling alternative conformational states of transporters and receptors with AlphaFold2” eLife 2022

del Alamo et al, “Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter” PNAS 2022a

Kalakoti et al, “AFsample2 predicts multiple conformations and ensembles with AlphaFold2” Sci Rep 2025
Ramasamy et al “Assessing the relation between protein phosphorylation, AlphaFold3 models and conformational variability” bioRxiv 2025

Stein et al , “SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2” Plos Comp Biol 2022

Wayment-Steele et al, “Predicting multiple conformations via sequence clustering and AlphaFold2” Nature 2023

Vani et al “Exploring kinase DFG loop conformational stability with AlphaFold2-RAVE” JCTC 2023

Zheng et al “AlphaFold3 in Drug Discovery: A comprehensive assessment of capabilities, limitations, and applications” bioRxiv 2025
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del Alamo et al, “Sampling alternative conformational states of transporters and receptors with AlphaFold2” eLife 2022

Faezov & Dunbrack “AlphaFold2 models of the active form of all 437 catalytically competent human protein kinase domains” bioRxiv 2023

Heo & Feig “Multi-state modeling of G-protein coupled receptors at experimental accuracy” Proteins 2022
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• Structure-based approaches that work:

- Template curation (del Alamo 2022, Faezov 

2023, Heo 2022)

- Caveat: only two AF2 monomer models can 

use templates (all multimer models can use 

templates)

Predicting alternate conformational states with vanilla AlphaFold2



del Alamo et al, “Conformational sampling and interpolation using language-based protein folding neural networks” bioRxiv 2023
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Strategies that work with other NNs



del Alamo et al “Sampling alternative conformational states of transporters and receptors with AlphaFold2” eLife 2022

Jing et al “AlphaFold meets Flow Matching for generating protein ensembles” ICLR 2024

Stein & Mchaourab “SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2” Plos Comp Biol 2022
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• Iterative PCA: Look for ensembles where 

predicted motions of models are consistent 

with one another

• Model quality check: Use MolProbity score to 

check for residue-scale errors

• Manually

How to filter bad models



Faezov & Dunbrack “AlphaFold2 models of the active form of all 437 catalytically competent human protein kinase domains” bioRxiv 2023
28 April 2025 25

• Faezov & Dunbrack predicted the active states of all kinases using MSA sourcing, MSA 

subsampling, and custom template DBs

• “No one set of inputs (MSA source, MSA depth, template database) produces active 

models of all 437 catalytic targets.”

• For two cases, AF2 models of active kinases were required as templates

Example: prediction of all 437 kinases in the human proteome



del Alamo et al, “Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter” PNAS 2022a
28 April 2025 26

Example: modeling alternative conformations of a transporter

Setup template DB
HH-suite 

Select representatives & design experiments
Models with best pTM in each cluster

Truncate sequence
Cut autoinhibitory domain

Reduce MSA depth
max_msa_clusters = 8

max_extra_msa = 16

Generate models
monomer_ptm NN 1: 25 models

monomer_ptm NN 2: 25 models

Increment MSA depth
max_msa_cluster += 1 (until >16)

max_extra_msa += 2 (until >32)

Dimensionality reduction
PCA using helical CA atoms

SciKit-Learn

Remove PCA outliers

Align all models
TM-Align



Ohnuki & Okazaki, “Integration of alphafold with molecular dynamics for efficient conformational sampling of transporter protein nark” JPC B 2024
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Example: modeling alternate conformation of the transporter NarK



Mansoor et al “Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling” JCTC 2024

Xu et al “Generating Multistate Conformations of P-type ATPases with a Conditional Diffusion Model” JCIM 2024
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• What makes these special?

- Custom training data (AlphaFlow, DiG, aSAMt) such as family-specific data (Xu 2025, Mansoor 

2024)

- Curated or reweighted training sets (Cfold, UFConf)

- Distinct architectures and training schedules (AlphaFlow, BioEmu, DiG, RF-VAE)

- Noised inputs (Str2str, diffusion- and flow matching-based methods)

• In general, these are:

- Worse at single-state modeling than dedicated protein folding NNs

- A bit better at recovering multiple relevant states (although not always)

- Much better at modeling “Brownian motion”

Custom neural networks for obtaining alternate states



Giulini et al “Improved structural modelling of antibodies and their complexes with clustered diffusion ensembles” bioRxiv 2025

Janson et al “Deep generative modeling of temperature-dependent structural ensembles of proteins” bioRxiv 2025

Jing et al “AlphaFold meets Flow Matching for generating protein ensembles” ICLR 2024
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• Fine-tuned AlphaFold2/ESMFold for prediction of 

different conformations – trained on short (many 

<1 µs MD simulations; Jing 2024)

• Anecdotally, doesn’t work for all proteins, such 

as fold-switching proteins

• Still requires MSA for AlphaFold

• In a separate benchmark, AlphaFlow but not AF2 

always generated antibody CDRH3 

conformations within 3.0 Å RMSD of ground 

truth (note: monomer only; Giulini 2025)

• Limited side chain sampling (Janson 2025)

AlphaFlow and ESMFlow



Rosenberg et al “Seeing Double: Molecular dynamics simulations reveal the stability of certain alternate protein conformations in crystal structures” bioRxiv 2024
28 April 2025 30

Examples of these methods failing to predict alternate states



Mansoor et al “Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling” JCTC 2024
28 April 2025 31

• Variational autoencoder added to RosettaFold, fine-tuned on many Ras structures and 

MD snapshots (Mansoor 2024)

• Tested on held-out crystal structures 

Fine-tuned RosettaFold+VAE for exploring Ras conformations



Bryant & Noé “Structure prediction of alternative protein conformations” Nature Comms 2024
28 April 2025 32

Cfold: retrained AF2-like NN with a bespoke training set
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• Relies on structure tokenization, a recent paradigm for 

encoding structure as a discrete vocabulary via a “codebook” 

(example: Foldseek)

• Fine-tuned from ESM3, a structure-aware language model

• Promising early results comparable to AlphaFlow

ESMDiff – Fine-tuned ESM3 for tokenized structure generation

Lu et al “Structure Language Models for Protein Conformation Generation” ICLR 2025



Janson et al “Deep generative modeling of temperature-dependent structural ensembles of proteins” bioRxiv 2025
28 April 2025 34

• Also trained on bulk MD simulations

• Has a tunable “temperature” parameter 

that predicts unfolded state when raised

• Some evidence that it generalizes dG, 

and captures differences between 

closely related proteins

• However, not always to sample distinct, 

dissimilar conformations

aSAMt



GIF source unknown

Janson et al “Deep generative modeling of temperature-dependent structural ensembles of proteins” bioRxiv 2025
28 April 2025 35

• Partial generalization to slow dynamics in 

fast-folding proteins

aSAMt (continued)



Lewis et al “Scalable emulation of protein equilibrium ensembles with generative deep learning” bioRxiv 2024
28 April 2025 36

• Among the most promising of the bespoke 

NNs for conformational modeling

• Independent outputs can sample distinct 

conformations; but not tested on large 

proteins

• Is able to model energy landscapes of 

simple proteins to ~1 kcal/mol @ 300K

• How? Bespoke fine-tuning method trained 

on 200 milliseconds of MD + 750,000 

stability datapoints

• Caveats:

- Folding/unfolding data used for training 

happen at different timescales than many 

conformational interconversion processes

BioEmu



• The problem is difficult:

• Prediction of protein dynamics is fundamentally different from prediction of protein structure

• Structure prediction training objective is clear and well-suited to learning from high-quality PDB 

data (Bronstein 2024)

• Dynamics are less conserved than structure (Tokuriki 2009)

• The training data are ill-suited:

• Dynamics data are ambiguous, sensitive to temperature and (for MD) starting conditions

• Experimental dynamics data are ambiguous, low-resolution, coarse (SAXS, NMR, FRET)

• MD simulations are sparse, incomplete, potentially inaccurate 

• Combinations data from different sources introduces noise
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Why don’t protein folding neural networks predict dynamics?



Husic & Pande, “Markov State Models: From an Art to a Science” JACS 2018

Noé & Rosta, “Markov Models of Molecular Kinetics” JCP 2019
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An example MD workflow for free energy calculations

Enhanced 

sampling 

(metadynamics, 

GaMD, etc)

Clustering



Husic & Pande, “Markov State Models: From an Art to a Science” JACS 2018

Noé & Rosta, “Markov Models of Molecular Kinetics” JCP 2019
28 April 2025 39

An example MD workflow for free energy calculations

Enhanced 

sampling 

(metadynamics, 

GaMD, etc)

Clustering



Bhakat et al, “Generalizable Protein Dynamics in Serine-Threonine Kinases: Physics is the key” bioRxiv 2025

Gu et al, “Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE” eLife 2024

Meller et al, “Accelerating Cryptic Pocket Discovery Using AlphaFold” JCTC 2023

Teng et al, “AlphaFold2-RAVE: Protein Ensemble Generation with Physics-Based Sampling” ChemRxiv 2025

Vani et al, “Exploring kinase Asp-Phe-Gly (DFG) loop conformational stability with AlphaFold2-RAVE” JCIM 2023
Vani et al, “AlphaFold2-RAVE: From Sequence to Boltzmann Ranking” JCTC 2023

Vats et al, “AlphaFold-SFA: Accelerated sampling of cryptic pocket opening, protein-ligand binding and allostery by AlphaFold, slow feature analysis and metadynamics” Plos One 2025
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• Several examples involving AlphaFold2 + RAVE (Vani 

2023, Vani 2023a)

- RAVE is a protocol for converting MD trajectories and 

snapshots into Boltzmann-weighted state assignments

- Kinases with/without ligand (Gu 2024), GPCRs (Vani 

2023), SARS-CoV-2 RBD (Teng 2025) 

• Collective variables from short MD trajectories of AF2 

models match those of much longer simulations (>100 

µs; Teng 2025 & Vats 2025)

• Can lead to the observation of rare events, such as 

cryptic pocket opening (Meller 2023, Vats 2025), 

conformational interconversion (Bhakat 2025)

Replacing enhanced sampling with ensemble prediction

DFG-IN DFG-INTER DFG-OUT
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Bhakat et al, “Generalizable Protein Dynamics in Serine-Threonine Kinases: Physics is the key” bioRxiv 2025

Gu et al, “Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE” eLife 2024
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Vats et al, “AlphaFold-SFA: Accelerated sampling of cryptic pocket opening, protein-ligand binding and allostery by AlphaFold, slow feature analysis and metadynamics” Plos One 2025



• Protein folding neural networks can be re-used for some dynamics prediction problems

• Other problems cannot be addressed by today’s suite of tools

• New benchmarks and test cases being released all the time to get a sense of which tools 

have which strengths

• A separate branch of research is focusing on accelerating MD simulations to take huge time 

steps (not discussed here)

• Availability

• Most MSA- and template-based approaches available on google colab via ColabFold

• Most methods available on GitHub: AlphaFlow, Rosetta-VAE, AFSample2, Cfold, aSAMt, 

BioEmu; ESMDiff available on GitHub for non-commercial use

• Additional resources

• “Modeling Boltzmann-weighted structural ensembles of proteins using artificial intelligence–

based methods” by Aranganathan et al 2025

• “Prediction of structural variation” by Kalakoti et al 2025
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Conclusions

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/batch/AlphaFold2_batch.ipynb
https://github.com/bjing2016/alphaflow
https://github.com/AlanYangYi/Protein-Structure-Generation-Using-Variational-Autoencoder
https://github.com/iamysk/AFsample2
https://github.com/patrickbryant1/Cfold
https://github.com/giacomo-janson/sam2
https://github.com/microsoft/bioemu
https://github.com/lujiarui/esmdiff
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Additional slidesSUPPLEMENTAL SLIDES



From Frank Noé’s blog - http://docs.markovmodel.org/lecture_tica.html

28 April 2025 45

What is TICA?



Jin et al “P2DFlow: A Protein Ensemble Generative Model with SE(3) Flow Matching” JCTC 2025
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