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Protein structure prediction is solved, but protein foldlng IS hot

State-of-the-art Al methods can reliably
predict static structures of monomeric
proteins to high accuracy (Simpkin 2023)

Includes de novo designed proteins (Verkuil
2022)

Unseen topologies (Ahdritz 2024, Frank
2024)

These do not extend to modeling their
dynamics: how/when proteins move

Some questions about dynamics can still
be answered by vanilla protein structure
prediction neural networks

Newer architectures can answer others

LM Designs
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Ahdritz et al “OpenfFold: retraining AlphaFold2 yields new insights into its leaming mechanisms and capacity for generalization”’Nat Methods 2024
Simpkin et al “Tertiary structure assessment at CASP15” Proteins 2025
Verkuil et al “Language models generalize beyond natural proteins” bioRxiv 2022

DeepMind “AlphaFold” Github 2021 28 April 2025



Protein structure prediction

* Current ensemble prediction methods can model:
- User-specified alternate conformations
- Some aspects of Brownian motion

* They cannot:
: . : : 154 pIDDT
- Model relative proportions of different populations = .
(Vani 2023, Riccabona 2024) B 10- . "
. . . .l 0 -l o )’ J ,..,
- Model interconversion dynamics/transition paths ¥ &y
. 54 q. ;
(del Alamo 2023) : v
- Model the effects of mutations, ligands, or P
modifications on these populations (Zheng 2025, ]
Ramasamy 2025)
* Requires lots of tinkering with settings, trial &
error
del Alamo et al “Conformational sampling and interconversion using language-based protein folding neural networks” bioRxiv 2023
Ramasamy et al “Assessing the relation between protein phosphorylation, AlphaFold3 models and conformational variability” bioRxiv 2025
Riccabona et al “Assessing AF2’s ability to predict structural ensembles of proteins” Structure 2024
Vani et al “Exploring kinase DF G loop conformational stability with AlphaFold2-RAVE” JCTC 2023
Wayment-Steele et al “Predicting multiple conformations via sequence clustering and AlphaFold2” Nature 2023 3

Zheng et al “AlphaFold3 in Drug Discovery: A comprehensive assessment of capabilities, limitations, and applications” bioRxiv 2025 28 April 2025



De novo prediction of protein structural dynamics: an outline

*  What are protein dynamics?

*  What kinds of biological problems are informed by studying dynamics?

* How can vanilla protein folding neural networks be modified to model dynamics?
*  What modified and bespoke methods exist to answer these questions?

*  Why don’t these methods learn protein dynamics?

* Integration of these methods with molecular dynamics

« (Caveat: this talk will only cover backbone modeling of well-structured proteins, and will ignore

innovations in modeling intrinsically disordered proteins (IDPs), oligonucleotides, or sidechain
ensembles

28 April 2025



What are protein dynamics, anyway?

1. Breadth of motion, e.g., Brownian motion

(m i Cro StateS) Ligand-free environment

2. Structures of distinct low-energy states _
(macrostates) - L

A W

3. Boltzmann weights between distinct low
energy populations

- Transition paths and energy barriers separa g
these populations

- The whole thing is called the free energy
landscape

4. Effect of ligands, mutations, covalent Apo structure
modifications, and combinations thereof on
the free energy landscape

- Metals, phosphoryl groups, waters, protons, etc

Ellaway et al, “Identifying protein conformational states in the Protein Data Bank: Toward unlocking the potential of integrative dynamics studies” Structural Dynamics 2024

Free energy

Ligand environment
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What protein dynamics tell us about biological mechanisms

* Conformational heterogeneity and binding

pl‘omiscu |ty (antibOdieS) A 2 Naive D44.1 CDR-H3 Loop s 2 Matured F10.6.6 CDR-H3 Lozgs
5.76 5.76
* Active site preorganization (designed and/or | g gl e
engineered enzymes) S o et U | oot
. . - 2.16@ N 2.16.;8:
* Cryptic pockets and alternative druggable ' el o
states (drug targets) ? s 2=5—5 —% 8 0

* Molecular basis of genetic diseases (almost all
human proteins)

* Evolution of functional novelty (most proteins)

*  Sometimes, structural modeling isn’t the best
way to answer biological questions about
protein dynamics

Dishman et al, “Evolution of fold switching in a metamorphic protein” Science 2021

Femandez-Quintero et al, ‘Local and Global Rigidification Upon Antibody Affinity Maturation” Frontiers in Immunology 2020

Meller et al, “Accelerating Cryptic Pocket Discovery Using AlphaFold” JCTC 2023

Tokuriki & Tawfik “Protein dynamism and evolvability” Science 2009

Yee et al “The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics” Mol Cell 2025
Zarifi et al “Distal mutations enhance catalysis in designed enzymes by facilitating substrate binding and product release” bioRxiv 2025
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What protein dynamics tell us about biological mechanisms
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What protein dynamics tell us about biological mechanisms
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Zarifi et al “Distal mutations enhance catalysis in designed enzymes by facilitating substrate binding and product release” bioRxiv 2025
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What protein dynamics tell us about blolomcal mechanisms
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* Active site preorganization (designed and/or
engineered enzymes)
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states (drug targets)
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(almost all human proteins)
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Dishman et al, “Evolution of fold switching in a metamorphic protein” Science 2021 Path cv Path cv Path cv

Femandez-Quintero et al, ‘Local and Global Rigidification Upon Antibody Affinity Maturation” Frontiers in Immunology 2020

Meller et al, “Accelerating Cryptic Pocket Discovery Using AlphaFold” JCTC 2023

Tokuriki & Tawfik “Protein dynamism and evolvability” Science 2009

Yee et al “The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics” Mol Cell 2025
Zarifi et al “Distal mutations enhance catalysis in designed enzymes by facilitating substrate binding and product release” bioRxiv 2025 28 April 2025 9



What protein dynamics tell us about biological mechanisms

* Conformational heterogeneity and binding
promiscuity (antibodies)

* Active site preorganization (designed and/or
engineered enzymes)

* Cryptic pockets and alternative druggable
states (drug targets)

* Molecular basis of genetic diseases (almost all
human proteins)

* Evolution of functional novelty (most proteins)

* Sometimes, structural modeling isn’t the best
way to answer biological questions about
protein dynamics

Dishman et al, “Evolution of fold switching in a metamorphic protein” Science 2021

Femandez-Quintero et al, ‘Local and Global Rigidification Upon Antibody Affinity Maturation” Frontiers in Immunology 2020

Meller et al, “Accelerating Cryptic Pocket Discovery Using AlphaFold” JCTC 2023

Tokuriki & Tawfik “Protein dynamism and evolvability” Science 2009

Yee et al “The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics” Mol Cell 2025
Zarifi et al “Distal mutations enhance catalysis in designed enzymes by facilitating substrate binding and product release” bioRxiv 2025

D

Time

Chemokine
Fold

| Anc.0 (40%) 3 9\

—@® On Fold
£Gg—g

350 MYA

\, / Alternate
Fold

S S S Y

Legend

Protein
'\“ (%D to
WT XCL1)

.Anc.1 (38%)

150 MYA

Present CCL20

(various species)
including
Human CCL20
vall
S

One Fold

P 80
Anc 2 (49%) -\

A nc.3 (64%)

AN

XCL1
(various species)

including
Human XCL1 (100%)
ol —

—

~\ =
Two Folds
28 April 2025

One Fold

10



What protein dynamics tell us about biological mechanisms
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The state of the art

* Modeling alternative conformations:

0.25
- Vanilla AlphaFold2 with subsampled or modified MSAs, ESMFlow
custom template databases, etc 0.20 -
- Fine-tuned AlphaFold2 (AlphaFlow, DiG, etc), ESMFold
(ESMFlow), or RosettaFold2 neural networks 2 0.15 - A
- Trained from scratch (Str2str, aSAMt, Cfold) &
e M : : S 0.10 -
odeling entire free energy landscapes MSA
- Distributional Graphormer (DiG), aSAMt, P2DFlow 0.05 {SuPsampling
- BioEmu: Prediction of free energy landscapes of : o haPold
monomeric proteins to ~1 kcal/mol 0.00{ E°MFold g AlphaFo
* Precision/diversity trade-off: one highly accurate 0.75 0.80 0.85

. ) Procici
model vs lots of potentially inaccurate models recision

* MD is the gold standard, but is excrutiatingly
expensive

Jing et al “AlphaFold meets Flow Matching for generating protein ensembles” ICLR 2024 28 April 2025 12



Protein folding NNs already “know” dynamics

* Error/confidence metrics show some correlation
with mobility/conformational flexibility in MD
simulations (Gavaldo-Garcia 2025, Jussupow
2023, Saldano 2022)

* Contacts for non-sampled states show up in
distograms (Jumper 2021)

* (Note that error metrics in AF2 & RosettaFold2
are highly correlated; Bennett 2023)
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- ® Figure 2. Overview of AlphaFold scores and protein dynamics metrics for all studied systems. A fully symmetric matrix indicates a perfect

80 correlation between the AlphaFold and MD data. The figure is divided into 28 subfigures for each of the proteins shown in Figure 1. The top
matrices show a comparison between (symmetrized) PAE matrices (blue) against the standard deviation of all C, distances o, (red). The PAE
scores range between 0.5 and 8.0, while the threshold for o, is set to <2.5 A to enable better comparisons between the different systems. The
75 ° bottom graphs compare the pLDDT scores (blue) and average standard deviation of the Ca-distances to the 20 closest amino acids 6,45 (red). See
Figures S1—S28 for a detailed analysis of the individual systems.
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Bennett et al “Improving de novo protein binder design with deep learning” Nature Comms 2023

Gavalda-Garcia et al “Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics” JMB 2025

Jussupow & Kaila “Effective Molecular Dynamics from Neural Network-Based Structure Prediction Models” JCTC 2023

Saldario et al “Impact of protein conformational diversity on AlphaFold predictions” Bioinformatics 2022 28 April 2025 13



Protein folding NNs tend to sample the same state repeatedly
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Chakravarty & Porter “AlphaFold2 fails to predict protein fold switching” Protein Science 2022 28 April 2025
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Review of AF2 architecture
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Predicting alternate conformational states with vanilla AlphaFold2

* Sequence-based methods that work
- MSA masking (Stein 2022, Kalakoti 2025)
-  MSA sourcing (da Silva 2024, Faezov 2023)
- MSA clustering (Wayment-Steele 2023)

- MSA subsampling (del Alamo 2022) R R I LT
. . T . KIL{IQ|R|IM|NJ|A KIL{Q|R|X|N|X
- Truncation of autoinhibitory domains (del Alamo cTelo[alalels] [lelalslxlalx

2 O 2 2a ) I— AFsample2 (Masked co-evolution

- Inclusion of conformationally selective binding
partners (Cummins 2022)

* Sequence-based augmentations that don’t work:

- Point mutations, including those that work in vitro
(Ramsamy 2025, Vani 2023, Zheng 2025;
SO m etl m eS ma ny m u tatl O n S WO rk) da Silva et al, ‘High-throughput prediction of protein conformational distributions with subsampled AlphaFold2 Nature Comms 2024

Cummins et al, “AlphaFold accurately predicts distinct conformations based on the oligomeric state of a de novo designed protein” Prot Sci 2022
del Alamo et al, “Sampling altemative conformational states of transporters and receptors with AlphaFold2” eLife 2022

del Alamo et al, “Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter” PNAS 2022a
Kalakoti et al, “AFsample2 predicts multiple conformations and ensembles with AlphaFold2” Sci Rep 2025

Ramasamy et al “Assessing the relation between protein phosphorylation, AlphaFold3 models and conformational variability’bioRxiv 2025

Stein et al, “SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2” Plos Comp Biol 2022
Wayment-Steele et al, “Predicting multiple conformations via sequence clustering and AlphaFold2” Nature 2023

Vani et al “Exploring kinase DF G loop conformational stability with AlphaFold2-RAVE” JCTC 2023

16 28 April 2025 Zheng et al “AlphaFold3 in Drug Discovery: A comprehensive assessment of capabilities, limitations, and applications” bioRxiv 2025



Predicting alternate conformational states with vanilla AlphaFold2
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Sequence-based methods that work
-  MSA masking (Stein 2022, Kalakoti 2025)
-  MSA sourcing (da Silva 2024, Faezov 2023)

-  MSA clustering (Wayment-Steele 2023)

’ | < 151 pIDDT
- I op5 R = -
MSA su.bsampllng.(d.el .Alamo 20?2) T, TNy 1'0'1 50 90
- Truncation of autoinhibitory domains (del Alamo ~I0F e .o
{’L) - 9 ® ,.
2022a) & - % 4
B &7
- Inclusion of conformationally selective binding < ““,‘
partners (Cummins 2022) Sl | L ,
0 5 10 15
: , _ -
Sequence-based augmentations that don’t work: (f o T
- Point mutations, including those that work in vitro Top5 =
(Ramsamy 2025, Vani 2023, Zheng 2025; FS state models
Sometlmes ma ny mutatlons WO rk) da Silva et al, "High-throughput prediction of protein conformational distributions with subsampled AlphaFold2 Nature Comms 2024

Cummins et al, “AlphaFold accurately predicts distinct conformations based on the oligomeric state of a de novo designed protein” Prot Sci 2022

del Alamo et al, “Sampling altemative conformational states of transporters and receptors with AlphaFold2” eLife 2022

del Alamo et al, “Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter” PNAS 2022a

Kalakoti et al, “AFsample2 predicts multiple conformations and ensembles with AlphaFold2” Sci Rep 2025

Ramasamy et al “Assessing the relation between protein phosphorylation, AlphaFold3 models and conformational variability’bioRxiv 2025

Stein et al, “SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2” Plos Comp Biol 2022

Wayment-Steele et al, “Predicting multiple conformations via sequence clustering and AlphaFold2” Nature 2023

Vani et al “Exploring kinase DF G loop conformational stability with AlphaFold2-RAVE” JCTC 2023

28 April 2025 Zheng et al “AlphaFold3 in Drug Discovery: A comprehensive assessment of capabilities, limitations, and applications” bioRxiv 2025



Predicting alternate conformational states with vanilla AlphaFold2
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Sequence-based methods that work

-  MSA masking (Stein 2022, Kalakoti 2025)

-  MSA sourcing (da Silva 2024, Faezov 2023)
- MSA clustering (Wayment-Steele 2023)

-  MSA subsampling (del Alamo 2022)

- Truncation of autoinhibitory domains (del Alamo
2022a)

- Inclusion of conformationally selective binding
partners (Cummins 2022)

Similarity to outward-facing structure (TM-score)

Sequence-based augmentations that don’t work:

- Point mutations, including those that work in vitro
(Ramsamy 2025, Vani 2023, Zheng 2025;
sometimes many mutations work)
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Similarity to inward-facing structure (TM-score)

LAT1, inward-facing (PDB: 6IRSb)

Open conformation
dy<d,

LAT1, outward-facing (PDB: 7DSQb)

da Silva et al, "High-throughput prediction of protein conformational distributions with subsampled AlphaFold2 Nature Comms 2024
Cummins et al, “AlphaFold accurately predicts distinct conformations based on the oligomeric state of a de novo designed protein” Prot Sci 2022

del Alamo et al, “Sampling altemative conformational states of transporters and receptors with AlphaFold2” eLife 2022
del Alamo et al, “Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter” PNAS 2022a
Kalakoti et al, “AFsample2 predicts multiple conformations and ensembles with AlphaFold2” Sci Rep 2025
Ramasamy et al “Assessing the relation between protein phosphorylation, AlphaFold3 models and conformational variability’bioRxiv 2025

Stein et al, “SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2” Plos Comp Biol 2022

Wayment-Steele et al, “Predicting multiple conformations via sequence clustering and AlphafFold2” Nature 2023
Vani et al “Exploring kinase DF G loop conformational stability with AlphaFold2-RAVE” JCTC 2023
28 April 2025 Zheng et al “AlphaFold3 in Drug Discovery: A comprehensive assessment of capabilities, limitations, and applications” bioRxiv 2025



Predicting alternate conformational states with vanilla AlphaFold2
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Sequence-based methods that work

MSA masking (Stein 2022, Kalakoti 2025)
MSA sourcing (da Silva 2024, Faezov 2023) A(PDB: 4Ja)  (M1,2.67)  (TM3,4,89) (TM5,10) ail

MSA clustering (Wayment-Steele 2023)

MSA subsampling (del Alamo 2022)

Truncation of autoinhibitory domains (del

Alamo 2022a)

GadC Bundle domain Hash domain Gating helices C-terminal c

l OGlutamate O GABA I

OO‘\
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Sequence-based augmentations that don’t work:

Point mutations, including those that work in vitro
(Ramsamy 2025, Vani 2023, Zheng 2025;

sometimes many mutations work)

28 April 2025
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Predicting alternate conformational states with vanilla AlphaFold2

* Sequence-based methods that work
-  MSA masking (Stein 2022, Kalakoti 2025)

-  MSA sourcing (da Silva 2024, Faezov 2023) A B
- MSA clustering (Wayment-Steele 2023)
- MSA subsampling (del Alamo 2022) AphaFoid mon AlphaFold dimer

- Truncation of autoinhibitory domains (del Alamo
2022a)

- Inclusion of conformationally selective binding
partners (Cummins 2022)

* Sequence-based augmentations that don’t work: ]

- Point mutations, including those that work in vitro
(Ramsamy 2025, Vani 2023, Zheng 2025;
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Predicting alternate conformational states with vaniIIa AIphaFoIdZ
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Sequence-based methods that work vrson
- MSA masking (Stein 2022, Kalakoti 2025) @ ﬁ
-  MSA sourcing (da Silva 2024, Faezov 2023)

- MSA clustering (Wayment-Steele 2023)

- MSA subsampling (del Alamo 2022)
- Truncation of autoinhibitory domains (del Alamo

2022a)

- Inclusion of conformationally selective binding partners .

(Cummins 2022) o
Sequence-based augmentations that don’t work: S
- Point mutations, including those that work in vitro 5

Y759A

v

D671N

Y755A 0671N Y755A

1 DFGIin __| DFGinter BN DFGout

Predicted conformational state

=== Phosphorylated
=== Non-phosphorylated

(Ramsamy 2025, Vani 2023, Zheng 2025; T

sometimes many mutations work)

28 April 2025

da Silva et al, "High-throughput prediction of protein conformational distributions with subsampled AlphaFold2 Nature Comms 2024

Cummins et al, “AlphaFold accurately predicts distinct conformations based on the oligomeric state of a de novo designed protein” Prot Sci 2022
del Alamo et al, “Sampling altemative conformational states of transporters and receptors with AlphaFold2” eLife 2022

del Alamo et al, “Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter” PNAS 2022a
Kalakoti et al, “AFsample2 predicts multiple conformations and ensembles with AlphaFold2” Sci Rep 2025

Ramasamy et al “Assessing the relation between protein phosphorylation, AlphaFold3 models and conformational variability’bioRxiv 2025

Stein et al, “SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2” Plos Comp Biol 2022
Wayment-Steele et al, “Predicting multiple conformations via sequence clustering and AlphaFold2” Nature 2023
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Predicting alternate conformational states with vanilla AlphaFold2

Active state prediction Inactive state prediction AlphaFold prediction
(A) 1.09 A (I) 1.31A (A) 2.03/(1)1.44 A

* Structure-based approaches that work:

- Template curation (del Alamo 2022, Faezov
2023, Heo 2022)

- Caveat: only two AF2 monomer models can
use templates (all multimer models can use
templates)

Active state [A]

Inactive state [A]

AlphaFold
Annotated DB — + + +
. ) . ) ) MSA input + + =
del Alamo et al, “Sampling altemative conformational states of transporters and receptors with AlphaFold2” eLife 2022
Faezov & Dunbrack “AlphaFold2 models of the active form of all 437 catalytically competent human protein kinase domains” bioRxiv 2023

Heo & Feig “Multi-state modeling of G-protein coupled receptors at experimental accuracy” Proteins 2022 28 April 2025 22



Strategies that work with other NNs
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How to filter bad models

* lterative PCA: Look for ensembles where
predicted motions of models are consistent
with one another

* Model quality check: Use MolProbity score to
check for residue-scale errors

* Manually

PC2 (2%)
PC2 (1%)

PC1 (92%) PC1 (95%)

del Alamo et al “Sampling altemative conformational states of transporters and receptors with AlphaFold2” eLife 2022
Jing et al “AlphaFold meets Flow Matching for generating protein ensembles” ICLR 2024
Stein & Mchaourab “SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2” Plos Comp Biol 2022
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Example: prediction of all 437 kinases in the human proteome

* Faezov & Dunbrack predicted the active states of all kinases using MSA sourcing, MSA
subsampling, and custom template DBs

*  “No one set of inputs (MSA source, MSA depth, template database) produces active
models of all 437 catalytic targets.”

* For two cases, AF2 models of active kinases were required as templates

DFGIn o " " .
Droau ¢ Active AURKA with TPX2 Inactive AURKA
5 10 15 20 ) - \"I
N ' ' “ho ATP_ ;
20 —
& : W
g 10 . :
N ~ [0 »
LysCA-PheCZ distance MR ANL

Faezov & Dunbrack “AlphaFold2 models of the active form of all 437 catalytically competent human protein kinase domains” bioRxiv 2023 28 April 2025 25



Example: modeling alternative conformations of a transporter
A

Truncate sequence
Cut autoinhibitory domain

Setup template DB
HH-suite

Reduce MSA depth

max_msa_clusters = 8
max_extra_msa = 16

N

Generate models
monomer_ptm NN 1: 25 models
monomer_ptm NN 2: 25 models

Increment MSA depth

max_msa_cluster += 1 (until >16)
max_extra_msa += 2 (until >32)

Align all models
TM-Align

Dimensionality reduction
PCA using helical CA atoms
SciKit-Learn

Remove PCA outliers

N

Models with best pTM in each cluster

Select representatives & design experiments

del Alamo et al, “Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter” PNAS 2022a

Inward-open Occluded

PC2

Confidence (pTM)

0.75 0.80 0.85 0.90 0.95

% [OGlutamate  ©GABA |

28 April 2025
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Example:
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Ohnuki & Okazaki, “Integration of alphafold with molecular dynamics for efficient conformational sampling of transporter protein nark” JPC B 2024
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Custom neural networks for obtaining alternate states

*  What makes these special?

- Custom training data (AlphaFlow, DiG, aSAMt) such as family-specific data (Xu 2025, Mansoor

2024)
- Curated or reweighted training sets (Cfold, UFConf)
- Distinct architectures and training schedules (AlphaFlow, BioEmu, DiG, RF-VAE)
- Noised inputs (Str2str, diffusion- and flow matching-based methods)
* In general, these are:
- Worse at single-state modeling than dedicated protein folding NNs
- A bit better at recovering multiple relevant states (although not always)
- Much better at modeling “Brownian motion”

Mansoor et al “Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling” JCTC 2024
Xu et al “Generating Multistate Conformations of P-type A TPases with a Conditional Diffusion Model” JCIM 2024

28 April 2025

28



AlphaFlow

AlphaFlow and ESMFlow

* Fine-tuned AlphaFold2/ESMFold for prediction of
different conformations — trained on short (many
<1 us MD simulations; Jing 2024)

* Anecdotally, doesn’t work for all proteins, such
as fold-switching proteins

* Still requires MSA for AlphaFold

* In a separate benchmark, AlphaFlow but not AF2 I
always generated antibody CDRH3 N G
conformations within 3.0 A RMSD of ground s
truth (note: monomer only; Giulini 2025)

a) 5 Loweqst H3 RMSD b)

aaaaaaaaaa

H3 RMSD [A]
> ® >

* Limited side chain sampling (Janson 2025) | 1 L
u LS x MD LYS x AlphaFlow

=2.5 0.0 25 =25 00 2.5
Giulini et al “Improved structural modelling of antibodies and their complexes with clustered diffusion ensembles” bioRxiv 2025 x1 [rad] xa [rad]

Janson et al “Deep generative modeling of temperature-dependent structural ensembles of proteins” bioRxiv 2025
Jing et al “AlphaFold meets Flow Matching for generating protein ensembles” ICLR 2024 28 April 2025 29



Examples of these methods failing to predict alternate states

3V3s:B

3AZY:A

40LE:B

Zplodeydly

eploJeydly

wiojun
Buidwes
VSN 24V

mojJeydiy

._oum\:_o
Buidwes
VSW 24V

mojJeydly

30

28 April 2025

Rosenberg et al “Seeing Double: Molecular dynamics simulations reveal the stability of certain altemate protein conformations in crystal structures” bioRxiv 2024



Fine-tuned RosettaFold+VAE for exploring Ras conformations

* Variational autoencoder added to RosettaFold, fine-tuned on many Ras structures and
MD snapshots (Mansoor 2024)

* Tested on held-out crystal structures

R -
o) ) [ S ey
& > - =
~ Y \) ¢ - )

mmm Closest Train Xtal
B Closest MD Snapshot
mm Closest AF2 Model

! Closest Generated Model

C-alpha coordinate RMSD of cryptic
pocket residues of docked structures
(angstrom)

0_
4lvé 5Syxz 5v71 6pgp 6n2k
Test Xtal

6PGP

Mansoor et al “Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling” JCTC 2024 28 April 2025 31



Cfold: retrained AF2-like NN with a bespoke training set

" Cfold

Structural

Coevw.
— >
clusters \ 1 repr. Evoformer

Training

Inference

Coev.

0"—‘0,_7‘ repr.
& Coev.

repr.

. . Evoformer
Different clusters with

identical sequences =
alternative conformations

b c
TM-score distribution 1.0 1
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Bryant & Noé “Structure prediction of alternative protein conformations” Nature Comms 2024
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ESMDiff — Fine-tuned ESM3 for tokenized structure generation

* Relies on structure tokenization, a recent paradigm for
encoding structure as a discrete vocabulary via a “codebook” Lol o

(example: Foldseek) \
8000 i
* Fine-tuned from ESM3, a structure-aware language model Flexibility 4 ] N
.. n GLU49
* Promising early results comparable to AlphaFlow 5 aoano
d Flexibility §
Apo/holo Fold-switch
Method N-term
ResFlex r (gl.) ResFlex r (pt.) TM-ens ResFlex r (gl.) ResFlex r (pt.) TM-ens

MSA-based MSA-Subs. 0.398 0.404 /0.371 0.856 /0.894 0.350 0.320/0.303 0.714/0.765
AlphaFlow 0.455 0.527/70.527 0.864 / 0.893 0.385 0.384/0.376 0.730/0.788

Eigenfold 0.126 0.407 /7 0.401 0.830/0.870 0.225 0.279/0.255 0.614/0.653

Seg-based Str2Str (PF) 0.174 0.326/0.307 0.731/0.728 0.161 0.246/0.233 0.615/0.644
Str2Str (SDE) 0.148 0.349/0.340 0.659/0.681 0.111 0.22470.220 0.521/0.545

ESMFlow 0416 0.496/0.522 0.856/0.893 0.269 0.345/0.329 0.700/0.755

S-T5 0.097 0.144 /0.166 0.726 /1 0.787 0.313 0.135/0.099 0.437/0.392

S-GPT 0.112 0.134/0.112 0.571/0.562 0.207 0.075/0.078 0.349/0.300

SLM ESM3 (zero shot) 0.312 0.473 / 0.466 0.839 /0.876 0.388 0.323/0.320 0.627/0.717
ESMDIff (ID) 0.424 0.502/0.517 0.851/0.883 0.391 0.328/0.346 0.660/0.720

ESMDiff (DDPM) 0.420 0.489/0.515 0.838 /0.877 0.402 0.341/0.288 0.626/0.685

Lu et al “Structure Language Models for Protein Conformation Generation” ICLR 2025

28 April 2025 33



aSAMt

* Also trained on bulk MD simulations

* Has a tunable “temperature” parameter
that predicts unfolded state when raised

* Some evidence that it generalizes dG,
and captures differences between
closely related proteins

* However, not always to sample distinct,
dissimilar conformations

a 4qbuA03 b 2vy2A00
L0 mecome® =omax| 1Y 00080 Tamaag k| 100000, ;o _mask| 100 Tm=431K
0.75 X 0.75 4 0.75 x 0.75 %
w & 2 s e
& 0.50 ? @ 0.501 » & 0.50 @ 0.50 X
X X ‘
0.251 XSAM % 0.254 XSAM X 0.25 0.25
¥
eMD eMD M
0001 x’s«""m« ooof % 0004 000000 0001 M
300 400 500 600 300 400 500 600 300 400 500 600 300 400 500 600
TIK] TIK) TIK] TIK]
C L 3nb2A04 : d 1qwjB0o0
1.00 »ooocq(x i _azsk| 1907 i _aagk| LOOoccemewms . . | 100 T
0.75 o 0.75 - ‘ﬁ‘ 0.75 X 0.75
w a w X A
w w
& 0.50 @ 0.50 1 " & 0.50 @ 0.50 1 %
\
0.25 ] 0.25 X 0.25 X 0.25 x%z
0.00 1 ooof T 0004 eoteooed 0o0d 000
300 400 500 600 300 400 500 600 300 400 500 600 300 400 500 600
[~} TIKI AaRTAND TIKI f TIK] anhnAn2 TIKI

Janson et al “Deep generative modeling of temperature-dependent structural ensembles of proteins” bioRxiv 2025
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i) Adenylate Kinase

BioEmu

ii) Fascin

i) Sialic acid
binding factor
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NNs for conformational modeling

* Independent outputs can sample distinct
conformations; but not tested on large
proteins

* Is able to model energy landscapes of
simple proteins to ~1 kcal/mol @ 300K

* How? Bespoke fine-tuning method trained
on 200 milliseconds of MD + 750,000
stability datapoints

 Caveats:

- Folding/unfolding data used for training
happen at different timescales than many
conformational interconversion processes

Lewis et al “Scalable emulation of protein equilibrium ensembles with generative deep leaming” bioRxiv 2024 28 April 2025 36



Why don’t protein folding neural networks predict dynamics?

* The problem is difficult:
* Prediction of protein dynamics is fundamentally different from prediction of protein structure

« Structure prediction training objective is clear and well-suited to learning from high-quality PDB
data (Bronstein 2024)

« Dynamics are less conserved than structure (Tokuriki 2009)

* The training data are ill-suited:
« Dynamics data are ambiguous, sensitive to temperature and (for MD) starting conditions

« Experimental dynamics data are ambiguous, low-resolution, coarse (SAXS, NMR, FRET)
« MD simulations are sparse, incomplete, potentially inaccurate
 Combinations data from different sources introduces noise

28 April 2025 37



An example MD workflow for free energy calculations

Enhanced
sampling
(metadynamics,
GaMD, etc)

A 4

Clustering

(a) simulation data (b) state assignments (c) observed transition (e) adjusted populations
counts matrix
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Husic & Pande, “Markov State Models: From an Art to a Science” JACS 2018
Noé & Rosta, “Markov Models of Molecular Kinetics” JCP 2019 28 April 2025 38



An example MD workflow for free energy calculations

(a) simulation data (b) state assignments (c) observed transition (e) adjusted populations
counts matrix
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* Several examples involving AlphaFold2 + RAVE (Vani
2023, Vani 2023a)

- RAVE is a protocol for converting MD trajectories and
shapshots into Boltzmann-weighted state assignments

- Kinases with/without ligand (Gu 2024), GPCRs (Vani
2023), SARS-CoV-2 RBD (Teng 2025)

* Collective variables from short MD tra!'ectori.es of AF2 DFG-IN DEG-INTER DEG-OUT
models match those of much longer simulations (>100
US; Teng 2025 & Vats 2025) Reduced MSA AF2 AF2-RAVE

* Can lead to the observation of rare events, such as ® 0 >
cryptic pocket opening (Meller 2023, Vats 2025), ’

conformational interconversion (Bhakat 2025) @ @

Bhakat et al, “Generalizable Protein Dynamics in Serine-Threonine Kinases: Physics is the key” bioRxiv 2025

Gu et al, “‘Empowering AlphafFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE” eLife 2024 R DFGin B DFGinter N OFGost
Meller et al, “Accelerating Cryptic Pocket Discovery Using AlphaFold” JCTC 2023

Teng et al, “AlphaFold2-RAVE: Protein Ensemble Generation with Physics-Based Sampling” ChemRXxiv 2025

Vani et al, “Exploring kinase Asp-Phe-Gly (DFG) loop conformational stability with AlphaFold2-RAVE” JCIM 2023

Vani et al, “AlphaFold2-RAVE: From Sequence to Bolfzmann Ranking’ JCTC 2023

Vats et al, “AlphaFold-SFA: Accelerated sampling of cryptic pocket opening, protein-ligand binding and allostery by AlphaFold, slow feature analysis and metadynamics” Plos One 2025 28 April 2025 40




Replacing enhanced sampling with ensemble prediction

* Several examples involving AlphaFold2 + RAVE (Vani
2023, Vani 2023a)

- RAVE is a protocol for converting MD trajectories and
snapshots into Boltzmann-weighted state assignments

- Kinases with/without ligand (Gu 2024), GPCRs (Vani
2023), SARS-CoV-2 RBD (Teng 2025)

* Collective variables from short MD trajectories of

» AF2 prediction
* cluster centers

AF2 models match those of much longer 12
simulations (>100 ps; Teng 2025 & Vats 2025) 10 J
* Can lead to the observation of rare events, such as T
cryptic pocket opening (Meller 2023, Vats 2025), g
conformational interconversion (Bhakat 2025) 3

Bhakat et al, “Generalizable Protein Dynamics in Serine-Threonine Kinases: Physics is the key” bioRxiv 2025

Gu et al, “‘Empowering AlphafFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE” eLife 2024

Meller et al, “Accelerating Cryptic Pocket Discovery Using AlphaFold” JCTC 2023

Teng et al, “AlphaFold2-RAVE: Protein Ensemble Generation with Physics-Based Sampling” ChemRXxiv 2025

Vani et al, “Exploring kinase Asp-Phe-Gly (DFG) loop conformational stability with AlphaFold2-RAVE” JCIM 2023

Vani et al, “AlphaFold2-RAVE: From Sequence to Bolfzmann Ranking’ JCTC 2023

Vats et al, “AlphaFold-SFA: Accelerated sampling of cryptic pocket opening, protein-ligand binding and allostery by AlphaFold, slow feature analysis and metadynamics” Plos One 2025 28 April 2025 41



Replacing enhanced sampling with ensemble prediction

MSA MSA Cluster 1 AF Ensemble
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Teng et al, “AlphaFold2-RAVE: Protein Ensemble Generation with Physics-Based Sampling” ChemRxiv 2025
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Conclusions

* Protein folding neural networks can be re-used for some dynamics prediction problems
« Other problems cannot be addressed by today’s suite of tools

 New benchmarks and test cases being released all the time to get a sense of which tools
have which strengths

« Aseparate branch of research is focusing on accelerating MD simulations to take huge time
steps (not discussed here)

* Availability
« Most MSA- and template-based approaches available on google colab via ColabFold

 Most methods available on GitHub: AlphaFlow, Rosetta-VAE, AFSample2, Cfold, aSAMt,
BioEmu; ESMDiff available on GitHub for non-commercial use

* Additional resources
+ “Modeling Boltzmann-weighted structural ensembles of proteins using artificial intelligence—
based methods” by Aranganathan et al 2025

« “Prediction of structural variation” by Kalakoti et al 2025

28 April 2025 43


https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/batch/AlphaFold2_batch.ipynb
https://github.com/bjing2016/alphaflow
https://github.com/AlanYangYi/Protein-Structure-Generation-Using-Variational-Autoencoder
https://github.com/iamysk/AFsample2
https://github.com/patrickbryant1/Cfold
https://github.com/giacomo-janson/sam2
https://github.com/microsoft/bioemu
https://github.com/lujiarui/esmdiff

SUPPLEMENTAL SLIDES



What is TICA?

From Frank Noé’s blog - http://docs.markovmodel.org/lecture_tica.html

28 April 2025
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